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Abstract
The class of norm-dependent random matrix ensembles is studied in the
presence of an external field. The probability density of the ensemble depends
on the trace of the squared random matrices, but is otherwise arbitrary. An
exact mapping to superspace is performed. A transformation formula is derived
which gives the probability density in superspace as a single integral over the
probability density in ordinary space. This is done for orthogonal, unitary and
symplectic symmetries. In the case of unitary symmetry, some explicit results
for the correlation functions are derived.

PACS numbers: 05.45.Mt, 05.30.−d, 02.30.Px

1. Introduction

Supersymmetry is a prominent and widely used tool in studying disordered systems and
systems that can be modelled by random matrices, see [1–6]. The method was developed
for Gaussian probability densities; a review and a discussion of the mathematical justification
were recently given in [7]. This restriction to Gaussian probability densities is no shortcoming
if one is exclusively interested in calculating correlations on the local scale of the mean level
spacing. This is due to the local universality [8, 9] for a large number of invariant random matrix
ensembles. The probability densities of such ensembles depends only on matrix invariants,
implying that eigenvalue and eigenvector statistics decouple. If an invariant probability density
does not introduce scales competing with the mean level spacing, the correlations on the local
scale are identical to those resulting from Gaussian probability densities, see a review in [4].
When studying matrix models in high-energy physics one is not interested in the local scale.
Another universality in the leading asymptotics of the matrix dimension was found [10] for
the correlation functions on large scales.

Nevertheless, restriction to Gaussian probability densities does not always suffice. First,
the one-point functions obviously depend on the specific form of the probability densities,
even if the latter are invariant, because the one-point function is not measured on the local
scale. Such level densities are important, for example, for applications in high-energy physics
[11], but also in finance [12].
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Second, it is often necessary to consider non-invariant random matrix ensembles in which
the eigenvalue and eigenvector statistics are coupled. Examples are sparse and banded random
matrices [13–15] whose correlations have been studied with the help of the supersymmetry
method in [16, 17], and random matrices with preferential basis of the type discussed in [18].
A particularly popular model which breaks the invariance goes back to the early work in [19]:
to distinguish some directions in matrix space, one adds an external field to random matrices
whose probability density is Gaussian, i.e. invariant, and one often averages over the matrices
representing the external field. This model is widely used to describe crossover transitions,
see the review in [4, 5]. It has been investigated with supersymmetric techniques in [20–22].
The correlation functions of sparse and banded random matrices, of the model with external
field and of the nonlinear σ model for disordered systems [1, 2] are to some extent similar,
in some special cases equivalent [23]. Here, we study invariant, but non-Gaussian random
matrix ensembles to which an external field is added such that the overall invariance is broken.
In such a model, scales competing with the local mean level spacing might occur, leading to
a deviation from universal features, such that the crossover transitions can differ for different
probability densities.

Third, invariant, non-Gaussian probability densities and their non-universal features on
special scales have always been of interest in conceptual studies and for considerations in
general statistical mechanics; we mention the bound-trace and the fixed-trace ensembles
[13] and the recently introduced ensembles deriving from a non-extensive entropy principle
[24–26].

In the present contribution, we show that the supersymmetry method can be extended
to random matrix models with non-Gaussian probability densities. In the context of
universality, asymptotic considerations for infinite level number have already been combined
with supersymmetric techniques for non-Gaussian probability densities in [27]. Here, however,
we aim at an exact discussion. We focus on the large class of norm-dependent random matrix
ensembles which depend through an arbitrary functional form on the trace of the squared
random matrices. Recently, a general construction of these ensembles was given in [28]. For
the reasons mentioned above, we include an external field. We have two goals. First, we want
to deliver the conceptually important insight that supersymmetry is by no means restricted to
Gaussian probability densities. Second, we want to provide a series of explicit and practically
relevant formulae for the correlation functions. The application of supersymmetry yields
particularly handy results in the presence of an external field.

The question whether or not norm-dependent ensembles can be formulated exactly in a
supersymmetric framework was also discussed by Kalisch. Although his approach was quite
different from that to be presented here, it would have been likely to produce equivalent results
for the case without an external field. Unfortunately, Kalisch left academia and his findings
are unpublished.

The paper is organized as follows. We formulate the problem in section 2, thereby
also introducing our notations and conventions. The supersymmetric representation of the
norm-dependent ensembles is constructed in section 3. In section 4, we discuss a series of
examples. Explicit results for the correlation functions are given in section 5. We summarize
and conclude in section 6.

2. Formulation of the problem

In section 2.1, we set up the generating function in the presence of an external field. As we need
to refer to the Gaussian case, we briefly sketch it in section 2.2. We discuss norm-dependent
ensembles and pose the problem in section 2.3.
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2.1. Generating function in the presence of an external field

The three symmetry classes of N × N random matrices H are labelled by the Dyson index β.
In the orthogonal class, H is real symmetric (β = 1) and in the unitary class, H is Hermitian
(β = 2). In the symplectic class, H is self-dual (β = 4) and the entries of H are 2 × 2
quaternions. The eigenvalues of H are doubly degenerate in the symplectic class. These
matrices have

µ = N +
β

2
N(N − 1) (1)

independent matrix elements. The quantity µ is often referred to as the number of degrees
of freedom. A normalized probability density function P (β)(H) defines—together with the
symmetry class—the random matrix ensemble. We add a fixed external field represented by a
matrix H0 which, without loss of generality, can be assumed to be diagonal. In the symplectic
class, it has dimension 2N × 2N . Thus, we are interested in a system described by H0 + αH ,
where α measures the relative strength. The k level correlation function R

(β)

k (x1, . . . , xk, α,H0)

is the probability density to find k eigenvalues of H0 + αH at positions x1, . . . , xk . The
correlation functions R̂

(β)

k (x1, . . . , xk, α,H0) are technically easier to handle. They include
real and imaginary parts of the propagator, while the R

(β)

k (x1, . . . , xk, α,H0) are only
the correlations of the imaginary parts. The latter can easily be constructed from the former.
We use the conventions of [21, 22, 29]. For arbitrary P (β)(H), the correlation function can be
written as the derivative

R̂
(β)

k (x1, . . . , xk, α,H0) = 1

(2π)k

∂k∏k
p=1 ∂Jp

Z
(β)

k (x + J )

∣∣∣∣
Jp=0

(2)

of a generating function

Z
(β)

k (x + J ) =
∫

d[H ]P (β)(H)

k∏
p=1

(
det(H0 + αH − xp − Jp)

det(H0 + αH − xp + Jp)

)γ

(3)

with respect to source variables Jp, p = 1, . . . , k. Here, we define γ = 1 if β = 1, 2 and
γ = 2 if β = 4, moreover we introduce the diagonal matrices x = diag(x1, x1, . . . , xk, xk)

and x = diag(−J1, +J1, . . . ,−Jk, +Jk). The volume element d[H ] is simply the product of
the differentials of all independent-matrix elements.

2.2. Gaussian random matrix ensembles

In the Gaussian case, the normalized probability density function with variance 2v2/β reads

P (Gβ)(H) = 1

2N/2

(
β

2πv2

)µ/2

exp

(
− β

4v2
Tr H 2

)
(4)

with the number µ of degrees of freedom given in equation (1). To properly account for the
degeneracies in the symplectic class, we define

Tr =
{

tr if β = 1, 2
1
2 tr if β = 4.

(5)

The probability density (4) and the symmetry class define the Gaussian orthogonal, unitary
and symplectic ensembles GOE, GUE and GSE for β = 1, 2, 4, respectively. The generating
function for the Gaussian ensembles

Z
(Gβ)

k (x + J, 2v2/β) =
∫

d[H ]P (Gβ)(H)

k∏
p=1

(
det(H0 + αH − xp − Jp)

det(H0 + αH − xp + Jp)

)γ

(6)
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has an exact representation as integral in superspace,

Z
(Gβ)

k (x + J, 2v2/β) =
∫

d[σ ]Q(Gβ)(σ ) detg−β/2γ ((ασ − x − J ) ⊗ 1γN + 1ζk ⊗ H0). (7)

The crucial feature of supersymmetry is the drastic reduction in the number of degrees of
freedom. This is borne out in the dimension of the matrix σ . It is a 2k × 2k Hermitian
supermatrix for β = 2 and a 4k × 4k Hermitian supermatrix with additional symmetries for
β = 1, 4 [1]; we use the conventions of [30, 31]. The parameters ζ = 2 for β = 2 and
ζ = 4 for β = 1, 4 are defined accordingly. We write 1M for the M × M unit matrix. Thus,
expression (7) contains the unit matrices 1N and 14k for β = 1, 1N and 12k for β = 2 and 12N

and 14k for β = 4. Again, the volume element d[σ ] is the product of the differentials of all
independent variables. For the complex anticommuting variables, we use the differentials of
the variable and of its complex conjugate. The probability density in superspace

Q(Gβ)(σ ) = c(β) exp

(
− β

4v2
trg σ 2

)
(8)

is a normalized Gaussian as well. Importantly, the normalization constants

c(β) =
{

2k(k−1) if β = 2
2k(4k−3)/2 if β = 1, 4

(9)

depend only on the dimension. In contrast to the ordinary case (4), they do not contain the
variance 2v2/β.

Result (7) has a remarkable property. The superdeterminant comprises a sum of two terms
which are both direct products. The first term is a direct product of supermatrices with a unit
matrix in ordinary space, and vice versa in the second term. Most conveniently, this decouples
to some extent the random matrix ensemble, i.e. the matrix σ from the external field H0. This
feature, which is typical for the supersymmetry method, was already very helpful for an exact
calculation of the transition from Poisson regularity to the GUE in [21, 22]. Furthermore, it
also made possible some asymptotic evaluation [20, 32] of the correlations on the local scale
for large coupling α/D, where D is the mean level spacing.

2.3. Posing the problem for norm-dependent ensembles

In analogy to the scalar product for vectors, one introduces a scalar product Tr HK for two
matrices H and K with the same symmetries. This is then used to define the norm of a matrix
by

‖H‖ =
√

Tr H 2, (10)

corresponding to the length of a vector. The class of norm-dependent ensembles has a
probability density of the form

P (β)(H) = P (Tβ)(Tr H 2), (11)

where P (Tβ)(u) is a function of the norm ‖H‖ or, equivalently of u = Tr H 2. Of course,
P (Tβ)(u) has to be chosen such that P (β)(H) is positive semi-definite and fulfills all the
necessary convergence requirements. According to the symmetries, there are norm-dependent
orthogonal, unitary and symplectic ensembles for β = 1, 2, 4. We denote them by TOE, TUE
and TSE, respectively. We show in appendix A that the νth moment of the probability density
can be expressed, if it exists, as the single integral

M(Tβ)
ν =

∫
P (Tβ)(Tr H 2)(Tr H 2)νd[H ]

=
(π

2

)µ/2 2N/2

	(µ/2)

∫ ∞

0
uν+µ/2−1P (Tβ)(u) du. (12)
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This includes the normalization by setting M
(Tβ)

0 = 1 for ν = 0.
Many ensembles fall into the norm-dependent class. Obviously, the Gaussian ensembles

are found by setting P (Tβ)(u) ∼ exp(−βu/4v2), which is an exponential function, not a
Gaussian. Non-trivial examples are the fixed-trace and the bound-trace ensembles [13]. An
important subclass of norm-dependent ensembles is derived from a non-extensive entropy
principle [24–26]. It comprises a variety of interesting cases which are found by limit
considerations. A rather general construction of norm-dependent ensembles using a single-
valued spread function is given in [28]. We return to this point.

We ask the following questions. Can we express the generating function for the norm-
dependent ensembles TOE, TUE and TSE given by

Z
(Tβ)

k (x + J ) =
∫

d[H ]P (Tβ)(Tr H 2)

k∏
p=1

(
det(H0 + αH − xp − Jp)

det(H0 + αH − xp + Jp)

)γ

(13)

as integral in superspace? Can we construct the supersymmetric analogue of the probability
density P (Tβ)(Tr H 2)? The answers are in the affirmative. We will derive the exact
representation

Z
(Tβ)

k (x + J ) =
∫

d[σ ]Q(Tβ)(trg σ 2) detg−β/2γ ((ασ − x − J ) ⊗ 1γN + 1ζk ⊗ H0), (14)

where the supermatrices σ are defined as above and where the probability density Q(Tβ)(trg σ 2)

is also norm-dependent, but now in superspace.
Importantly, the direct product structure implying the decoupling of the random matrix

ensemble from the external field H0 is also present here for all TOE, TUE and TSE. This
extends the discussion in section 2.2 for the Gaussian ensembles.

3. Supersymmetric representation

In section 3.1, we derive the supersymmetric representation by using Fourier integrals. We
present the transformation formulae for the probability densities in section 3.2. The connection
to the spread function is discussed in section 3.3, which also contains an alternative derivation
of the transformation formulae.

3.1. Derivation using Fourier integrals

The norm ‖H‖ is non-negative and we have u = Tr H 2 � 0. Thus, P (Tβ)(u) is only defined
on the positive u axis. When introducing the Fourier integral over the entire axis, we have to
set P (Tβ)(u) = 0 for u < 0, such that

p(Tβ)(y) = 1√
2π

∫ ∞

0
P (Tβ)(u) exp(iyu) du (15)

is the Fourier transform with the inversion

P (Tβ)(u) = 1√
2π

∫ +∞

−∞
p(Tβ)(y) exp(−iyu)dy. (16)

We add a small imaginary increment to the Fourier variable, y− = y − iε and insert
equation (16) with u = Tr H 2, i.e. the integral

P (Tβ)(Tr H 2) = 1√
2π

∫ +∞

−∞
p(Tβ)(y) exp(−iy− Tr H 2) dy (17)

into the generating function (13). We thereby rediscover the Gaussian case (6) with the
variance 1/i2y−. The integrals over H can now be done as Gaussian integrals, the complex
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variance 1/i2y− does not cause a problem. Even without the imaginary increment, they exist
as Fresnel integrals. The imaginary increment makes standard Gaussian integrals out of them,
but this is not the motivation for it. We need the imaginary increment later on. The important
difference to the Gaussian case of section 2.2 is the fact that the Gaussian exp(−iy− Tr H 2)

comes without normalization constant for the H integration. Hence, when inserting
equation (17) into equation (6) we obtain the inverse of the normalization constant as a
y-dependent factor in the Fourier integral

Z
(Tβ)

k (x + J ) = 1√
2π

∫ +∞

−∞
dy p(Tβ)(y)2N/2

(
π

i2y−

)µ/2

Z
(Gβ)

k (x + J, 1/i2y−), (18)

with Z
(Gβ)

k (x + J, 1/i2y−) given in equation (6). We now employ the supersymmetric
representation (7) and find

Z
(Tβ)

k (x + J ) = 1√
2π

∫ +∞

−∞
dy p(Tβ)(y)2N/2

(
π

i2y−

)µ/2 ∫
d[σ ]c(β) exp(−iy− trg σ 2)

× detg−β/2γ ((ασ − x − J ) ⊗ 1γN + 1ζk ⊗ H0). (19)

Hence, by interchanging the integrations, we arrive at the desired equation (14), where the
probability density in superspace

Q(Tβ)(trg σ 2) = c(β) 2N/2

√
2π

(π

2

)µ/2
∫ +∞

−∞
p(Tβ)(y)

exp(−iy− trg σ 2)

(iy−)µ/2
dy (20)

is the inverse Fourier integral with an additional power (iy−)µ/2 in the denominator.

3.2. Transformation formulae

We set w = trg σ 2 and plug the Fourier integral (15) into equation (20),

Q(Tβ)(w) = c(β) 2N/2

2π

(π

2

)µ/2
∫ ∞

0
duP (Tβ)(u)

∫ +∞

−∞

exp (−iy(u − w))

(iy−)µ/2
dy. (21)

The y integral converges because of the imaginary increment and can be done in a standard way
[43]. Apart from factors, it yields �(u−w)(u−w)µ/2−1. We thus arrive at the transformation
formula

Q(Tβ)(w) = c(β)2N/2

	(µ/2)

(π

2

)µ/2
∫ ∞

0
P (Tβ)(u + w)uµ/2−1 du. (22)

This result allows one to calculate, by a single integration, the probability density in superspace
for any norm-dependent ensemble TOE, TUE and TSE. We note that the Fourier integral (15)
has to exist, but, importantly, its explicit knowledge is not needed to obtain the probability
density Q(Tβ)(w) in superspace. For even µ, i.e. for integer values of µ/2, the transformation
formula (22) can be written as a µ/2-fold iterated integral. For odd values of µ, it becomes
the proper extension of an iterated integral, known as a fractional integral. Furthermore, the
transformation formula can be inverted. For even number of degrees of freedom µ, repeated
integration by parts yields

P (Tβ)(u) = (−1)µ/2

c(β)2N/2

(
2

π

)µ/2
∂µ/2

∂uµ/2
Q(Tβ)(u). (23)

This inversion has to be properly interpreted as a fractional derivative if µ is odd.
From a conceptual viewpoint, the pair of transformation formulae (22) and (23) states the

main result of this contribution. The power of supersymmetry lies in the drastic reduction of
the degrees of freedom. The mechanism of how this happens was previously only known in
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the Gaussian case. The transformation formulae (22) and (23) considerably generalize that.
A particularly interesting interpretation follows from formula (23). The probability densities
P (Tβ)(u) and Q(Tβ)(u) formally coincide for µ = 0, i.e. in zero dimensions, N = 0. This
is already visible in the Gaussian case. Apart from the variance-independent normalization
c(β), the Gaussian (8) in superspace with u = trg σ 2 indeed follows from the Gaussian (4) in
ordinary space with u = Tr H 2 by simply setting N = 0.

Another interesting observation results from putting w = 0 in the transformation formula
(22) and then using the normalization of P (Tβ)(u) which can be read off from equation (12) for
ν = 0. One has Q(Tβ)(0) = c(β). In other words, the normalization of the probability density
in ordinary space corresponds to the value of the probability density in superspace at w = 0.
This reflects the Efetov–Wegner–Parisi–Sourlas theorem [1, 33–35], referred to as Rothstein
theorem in mathematics [36]. It implies that the normalization integral for a function such as
ours which only depends on invariants reads

1 =
∫

Q(Tβ)(trg σ 2) d[σ ] = 1

c(β)
Q(Tβ)(0). (24)

This phenomenon exclusively occurs in superspace; it is due to a subtle mutual cancellation of
singularities. Hence, it is reassuring to see that the normalization of the probability density in
ordinary space leads—via the Efetov–Wegner–Parisi–Sourlas theorem—to the normalization
of the probability density in superspace.

3.3. Connection to the spread function

A rather general construction of norm-dependent ensembles was given by Muttalib and Klauder
[28] for the unitary case. It can be generalized to all three symmetry classes in a straightforward
manner. The probability density

P (Tβ)(Tr H 2) =
∫ ∞

0
f (Tβ)(t)

1

2N/2

(
β

2πt

)µ/2

exp

(
− β

4t
Tr H 2

)
dt (25)

is expressed as an integral involving a normalized Gaussian with a real variance 2t/β. The
quantity f (Tβ)(t) is referred to as spread function. As seen from equation (25) it is normalized,∫ ∞

0
f (Tβ)(t) dt = 1. (26)

We insert the integral (25) into the generating function (13) and find in steps analogous to
those in section 3.1,

Z
(Tβ)

k (x + J ) =
∫ ∞

0
dt f (Tβ)(t)Z

(Gβ)

k (x + J, 2t/β)

=
∫ ∞

0
dt f (Tβ)(t)

∫
d[σ ]c(β) exp

(
− β

4t
trg σ 2

)
× detg−β/2γ ((ασ − x − J ) ⊗ 1γN + 1ζk ⊗ H0). (27)

This yields again equation (14) where the probability density in superspace now reads

Q(Tβ)(trg σ 2) =
∫ ∞

0
f (Tβ)(t)c(β) exp

(
− β

4t
trg σ 2

)
dt. (28)

Comparing equations (25) and (28) one sees that the probability densities in ordinary and
in superspace are given as integrals over the spread function times a normalized Gaussian.
Moreover, we note that the variable t in the variance 2t/β has the meaning of a diffusion time.
In ordinary space, the diffusion is Dyson’s Brownian motion [37, 38]. It has a fully fledged
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analogue in superspace [22] with the same diffusion time. Thus, the TOE, TUE and TSE are,
in ordinary and in superspace, ensembles constructed as averages involving the diffusion time.

The transformation formulae (22) and (23) are easily rederived from equations (25) and
(28). We emphasize that only the existence, but not the precise knowledge of the spread
function, is needed to calculate the probability density in superspace. Those readers might
appreciate the alternative derivation of the transformation formulae by means of the spread
function who did not feel comfortable with our treatment of the singularities in the Fourier
integrals of section 3.1.

4. Some specific examples

To gain insight into how the transformation formulae work, we calculate the probability
densities in superspace for a variety of examples. To acquire some first experience, we revisit
the Gaussian ensembles in section 4.1. We discuss, for all three symmetry classes β = 1, 2, 4
the bound-trace, the fixed-trace, the Gauss-monomial and the Gauss-quartic ensembles in
sections 4.2 to 4.5. For the probability densities in ordinary space of these examples, we
introduce constants a0, a1 and a2 which are always assumed to be real and positive. Using
equation (12), they can be expressed in terms of the moments M(Tβ)

ν . In particular, the overall
normalization constant can be fixed with equation (12) for ν = 0. However, we rather use
the relation Q(Tβ)(0) = c(β) which is according to section 3.2 equivalent to the normalization
of the probability density in ordinary space. In section 4.6 we discuss the ensembles derived
from a non-extensive entropy principle. We always write u = Tr H 2 and w = trg σ 2.

4.1. Revisiting the Gaussian ensembles

Inserting the Gaussian (4) into the transformation formula (22), we find

Q(Gβ)(w) = exp

(
− β

4v2
w

)
c(β)

	(µ/2)

(
β

4v2

)µ/2 ∫ ∞

0
exp

(
− β

4v2
u

)
uµ/2−1 du, (29)

which gives the Gaussian (8). The Fourier transform

p(Gβ)(y) = 1√
2π2N/2

(
β

2πv2

)µ/2 1

iy − β/4v2
(30)

can also be used to infer the spread function, which is a δ function. The integral (25) has to be
interpreted as a proper Cauchy integral.

4.2. Bound-trace ensembles

The probability density sets a cutoff for the norm of the random matrices according to
[13, 39, 40]

P (BTβ)(u) = a0�(a1 − u) . (31)

The transformation formula (22) yields

Q(BTβ)(w) = c(β) (a1 − w)µ/2

a
µ/2
1

�(a1 − w) , (32)

which is a bound-trace ensemble as well, but now in superspace and multiplied with a
polynomial factor.
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4.3. Fixed-trace ensembles

The probability density fixes the norm of the random matrices such that [13, 39–41]

P (FTβ)(u) = a0δ (a1 − u) . (33)

With the transformation formula (22) we find

Q(FTβ)(w) = c(β) (a1 − w)µ/2−1

a
µ/2−1
1

�(a1 − w) , (34)

which is, once more, a bound-trace ensemble of the form (32). We note that the exponent in
the polynomial factor is µ/2 − 1 compared with µ/2 in equation (32). This simply reflects
that the probability density (33) is the derivative of the probability density (31). We mention
that fixed-trace ensembles do not seem to exist in superspace, at least not in a simple-minded
interpretation. This is so, because the normalization requirement Q(Tβ)(0) = c(β) can hardly
be fulfilled if Q(Tβ)(w) includes a δ function.

4.4. Gauss-monomial ensembles

The probability densities in superspace derived in the previous examples tend to have
remarkable similarity to those in ordinary space. This seems to be a fairly robust phenomenon.
To illustrate it further, we introduce ensembles comprising a Gaussian and a monomial factor,

P (GMβ)(u) = a0u
m exp(−a1u), (35)

where m is an integer. The transformation formula (22) implies

Q(GMβ)(w) = c(β) exp(−a1w)

m∑
m′=0

(
m

m′

)
	(m − m′ + µ/2)

	(m + µ/2)
(a1w)m

′
. (36)

These are Gauss-polynomial ensembles including all powers between zero and m.

4.5. Gauss-quartic ensembles

We now consider Gaussian probability densities supplemented with a quartic term in the
exponent [42],

P (GQβ)(u) = a0 exp(−a1u − a2u
2). (37)

With the transformation formula (22), we obtain

Q(GQβ)(w) = c(β) exp
(
−a1

2
w − a2

2
w2

) D−µ/2(a1/
√

2a2 +
√

2a2w)

D−µ/2(a1/
√

2a2)
, (38)

where Dp(z) denotes the parabolic cylinder function of order p [43]. Once more, the
probability density in superspace contains the functional form of that in ordinary space.
However, this example also shows that one can come up with cases in which the additional
contribution has a rather inconvenient structure.

4.6. Ensembles deriving from a non-extensive entropy principle

An interesting family of ensembles was constructed in [24, 25]. Among other features, it
yields in a certain parameter range an invariant Lévy type of ensemble. The construction of
[24, 25] is done for the orthogonal symmetry class and was extended to β = 2, 4 in [26]. The
probability density in ordinary space,

P (NEβ)(u) = a0

(
1 +

κ

�
u
)1/(1−q)

, (39)
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depends on a parameter q used in the non-extensive entropy. Moreover, it includes a positive
parameter κ and

� = 1

q − 1
− µ

2
, (40)

with µ being the number of degrees of freedom (1). To avoid confusion with the notation in
the present contribution, we write κ,�,µ, instead of α, λ, f in [25].

We consider q > 1. This choice makes the exponent in the probability density (39)
negative. Moreover, it requires � > 0 such that

1 < q < qmax = 1 +
2

µ
. (41)

With the help of the integral representation [25]

P (NEβ)(u) = a0

	(1/(q − 1))

∫ ∞

0
ξ 1/(q−1)−1 exp

(
−

(
1 +

κ

�
u
)

ξ
)

dξ, (42)

we can obtain the probability density in superspace from the transformation formula (22).
The u integral has to be done first. Convergence is ensured because of the condition � > 0.
Collecting everything, we arrive at

Q(NEβ)(w) = c(β)
(

1 +
κ

�
w

)−�

. (43)

Remarkably, this is again the same functional form as in ordinary space. The (negative)
exponent 1/(1 − q) in ordinary space is mapped onto −� in superspace. We note that
Q(NEβ)(w) depends on q only via the parameter � which appears twice in equation (43).

5. Correlation functions

After discussing general results for all symmetry classes in section 5.1, we give more explicit
formulae for the unitary case in section 5.2. All results to be given here can also be averaged
over the external field H0 with some probability density P0(H0). However, as this is an obvious
step, we do not go into that further.

5.1. All symmetry classes

We now have the supersymmetric representation (14) for the generating function and the one-
dimensional transformation formula (22) for the probability density Q(Tβ)(w) in superspace.
Hence, we can exploit the advantages of supersymmetry also for norm-dependent ensembles.
In particular, the level number N is, in contrast to the ordinary space, an explicit parameter in
equation (14). This makes it possible to study the generating function by means of a saddle
point approximation for large N. As the details of such a calculation will sensitively depend
on the specific form of Q(Tβ)(w), we refrain from attempting a general discussion.

We can also proceed by observing that equations (18) and (27) are integral transforms of
the generating functions involving the Fourier integral,

Z
(Tβ)

k (x + J ) = 2N/2πµ/2

√
2π

∫ +∞

−∞

p(Tβ)(y)

(i2y−)µ/2
Z

(Gβ)

k (x + J, 1/i2y−) dy, (44)

or the spread function,

Z
(Tβ)

k (x + J ) =
∫ ∞

0
f (Tβ)(t)Z

(Gβ)

k (x + J, 2t/β) dt, (45)
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respectively. Thus, the correlation functions R
(Tβ)

k (x1, . . . , xk, α,H0) of all norm-
dependent ensembles are obtained as single integrals over the corresponding ones
R

(Gβ)

k (x1, . . . , xk, α,H0) in the Gaussian case. With equations (2) and (44), we find

R
(Tβ)

k (x1, . . . , xk, α,H0) = 2N/2πµ/2

√
2π

∫ +∞

−∞
dy

p(Tβ)(y)

(i2y−)µ/2

(
i2y

β

)k/2

×R
(Gβ)

k (x1

√
2iy/β, . . . , xk

√
2iy/β, α,H0

√
2iy/β). (46)

In those cases where the imaginary unit and the singularities can cause problems, one should
rather resort to the alternative expression deriving from equation (45),

R
(Tβ)

k (x1, . . . , xk, α,H0) =
∫ ∞

0
dt

f (Tβ)(t)

(2t)k/2
R

(Gβ)

k (x1/
√

2t, . . . , xk/
√

2t, α,H0/
√

2t). (47)

For H0 = 0 and β = 1, equation (47) was already obtained in [28] and a similar result is given
in [25] for the ensembles deriving from non-extensive entropy. Here, this is generalized to all
three symmetry classes.

Of course, supersymmetry is not needed to derive formulae (46) or (47). For H0 = 0, one
can now use the closed expressions for the correlation functions R

(Gβ)

k (x1, . . . , xk, 1, 0) from
[13] and calculate the correlation functions for all ensembles TOE, TUE and TSE. In this case
H0 = 0, the correlation functions for the ensembles considered in sections 4.2 and 4.3 were
calculated in [39, 40], those for ensembles of the type discussed in section 4.5 were computed
in [42], and the correlation functions for the ensembles addressed in sections 4.6 were worked
out in [24–26].

For H0 �= 0, however, supersymmetry is very helpful, because it provides formula (7).
As already discussed in section 2.2, the random matrix ensemble, i.e. the matrix σ , is to some
extent decoupled from the external field H0 due to the direct product structure. This makes it
possible to obtain asymptotic results for large coupling α/D as in [20, 32] which can then be
inserted into formulae (46) and (47).

5.2. Unitary symmetry class

In the unitary symmetry class, i.e. for β = 2, we can gain additional insights by following the
steps outlined in [21, 22, 29]. We work with the integral transform (45) and the supersymmetric
representation of the generating function (7). We absorb the parameter α into the supermatrix
σ , which is equivalent to multiplying the variance of the Gaussian probability density with
α2. The supermatrix σ is now shifted by x + J to remove these latter matrices from the
superdeterminant. We then diagonalize σ = usu−1 and do the angular integration over the
unitary supermatrix u. Here, s = diag(s11, is12, . . . , sk1, isk2) is a diagonal matrix containing
the eigenvalues sp1, p = 1, . . . , k in the bosonic and isp2, p = 1, . . . , k in the fermionic
sector. This yields [21, 22]

Z
(G2)
k (x + J, t) = 1 − η(x + J ) +

1

Bk(x + J )

∫
d[s]Bk(s)

1

(2πtα2)k

× exp

(
− 1

2tα2
trg(s − x − J )2

)
detg−1(s± ⊗ 1N − 12k ⊗ H0), (48)

where the function

Bk(s) = det

[
1

sp1 − isq2

]
p,q=1,...,k

(49)

is the square root of the Jacobian or Berezinian arising when changing the integration variables
in superspace to eigenvalue-angle coordinates. The eigenvalues in the supermatrix carry a
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small imaginary increment to ensure convergence, we write as s±. The function η(x + J ) in
equation (48) takes care of some Efetov–Wegner–Parisi–Sourlas contributions which are not
needed here as we are mainly interested in the correlations of the imaginary parts.

Inserting equation (48) into the integral transform (45) and using the normalization (26),
we arrive at

Z
(T 2)
k (x + J ) = 1 − η(x + J ) +

1

Bk(x + J )

∫
d[s]Bk(s)

1

α2k

×Q
(T 2)
E

(
1

α2
trg(s − x − J )2

)
detg−1(s± ⊗ 1N − 12k ⊗ H0), (50)

where we introduced the probability density

Q
(T 2)
E (w) =

∫ ∞

0
f (T 2)(t)

1

(2πt)k
exp

(
− w

2t

)
dt. (51)

Both of expressions (28) and (51) yield probability densities in superspace, the former in the
full, the latter in the eigenvalue space. This is the reason why equation (51) contains the power
t k in the denominator, it arose from the integration over the unitary supermatrix. Nevertheless,
we can apply the same line of argument as in section 3.3 and derive from equations (25) and
(51) the transformation formula

Q
(T 2)
E (w) = 2N/2π(N2−2k)/2

	((N2 − 2k)/2)

∫ ∞

0
P (T 2)(u + w)u(N2−2k)/2−1 du, (52)

with µ = N2 being the number of degrees of freedom in the unitary case β = 2. A comparison
with the transformation formula (22) shows that the probability densities in the eigenvalue
superspace follows from that in full superspace by simply replacing the number of degrees of
freedom N2 with the reduced number N2 − 2k, where 2k is the number of degrees of freedom
in the eigenvalue superspace,

Q
(T 2)
E (w) = 2(N2−2k)/2

c(2)
Q(T 2)(w)

∣∣∣∣
µ=N2−2k

. (53)

One also obtains the inversion of equation (52) by modifying the transformation formula (23)
accordingly.

Hence, we now have an exact expression (50) of the generating function for all TUE as
a 2k-dimensional integral with a probability density given by equations (52) or (53). Before
going over to the correlation functions, a caveat of the same kind as discussed in [22] is in order.
The limit α → 0 can be taken without problems in equation (50), thereafter the derivatives with
respect to the source variables J can be taken and yield the correlation functions for α = 0.
Because of some interference with the Efetov–Wegner–Parisi–Sourlas term, this should not
be done in reversed order for the case α = 0. Thus, the following discussion applies to
α > 0, where the derivatives of the generating function (50) can be taken first. Assuming
that the probability density (52) does not contain inverses of source variables, we find as
in [21, 22, 29]

R
(T 2)
k (x1, . . . , xk, α,H0) = (−1)k

πk

∫
d[s]Bk(s)

1

α2k

×Q
(T 2)
E

(
1

α2
trg(s − x)2

)
	

k∏
p=1

N∏
n=1

isp2 − H0n

s±
p1 − H0n

, (54)

where H0n are the entries of the diagonal matrix H0. The symbol 	 denotes the proper
restriction to the imaginary parts which will be explained below. As already observed in [29],
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the determinantal structure of the GUE correlation functions arises in this supersymmetry
approach as an immediate consequence of the determinant structure (49). Thus, it follows
from the Jacobian in superspace. The only term in the integrand which can destroy this
feature for the TUE is the probability density Q

(T 2)
E (w). To circumvent this problem, we

use formula (51) which makes possible to take advantage of explicit results for the GUE
correlation functions in the presence of an external field. The formulae given in [21, 22] are
more general than what we need in the present context, because they also contain an integral
over the probability density P0(H0) of the external field H0. However, a δ function P0(H0)

trivially yields

R
(G2)
k (x1, . . . , xk, tα

2,H0) = det[CN(xp, xq, tα
2,H0)]p,q=1,...,k. (55)

The kernel is given as the double integral

CN(xp, xq, tα
2,H0) = − 1

2π2tα2

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2

× exp

(
(is2 − xq)

2

2tα2
− (s1 − xp)2

2tα2

)
	

N∏
n=1

is2 − H0n

s−
1 − H0n

, (56)

where we drop the indices p and q of the integration variables. The present notation slightly
deviates, in a hopefully self-explanatory way, from the previous one: we now have the variance
tα2 as an argument, because it contains the parameter α after the above-mentioned changes
of integration variables. The process of going over to the imaginary parts of the correlation
functions amounts to inserting the definition

	
N∏

n=1

is2 − H0n

s−
1 − H0n

= 1

i2

(
N∏

n=1

is2 − H0n

s−
1 − H0n

−
N∏

n=1

is2 − H0n

s+
1 − H0n

)
. (57)

We note that the term 1/(s1 − is2) in the integrand of equation (56) is the remainder of the
Jacobian. After [21, 22, 29], such double integral expressions were also derived by other
authors.

We combine these findings and arrive at

R
(T 2)
k (x1, . . . , xk, α,H0) =

∫ ∞

0
dt

f (T 2)(t)

(2πt)k
det[CN(xp, xq, tα

2,H0)]p,q=1,...,k (58)

which is an exact representation of the TUE correlation functions for finite level number in the
presence of an external field. For convenience, we derived this result using the spread function
f (T 2)(t). However, depending on the specific form of the probability density Q

(T 2)
E (w) given

in equations (52) and (53), one might want to prefer another integral representation. Any such
representation which involves a Gaussian will lead to a result of the form (58), but with the
spread function replaced by another function. It should also be mentioned that result (58) can
alternatively be derived starting directly from equation (47). This, however, would not lead to
the probability density Q

(T 2)
E (w) and the corresponding observation concerning the reduced

number of degrees of freedom. Furthermore, we note that the double integral (56) for the
kernel can be evaluated in closed form. For the sake of completeness, we give this result in
appendix B.

6. Summary and conclusions

We showed that all norm-dependent random matrix ensembles TOE, TUE and TSE have a
supersymmetric representation. Hence, supersymmetry is not at all restricted to Gaussian
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probability densities. We mapped the functions generating the k-point correlation functions
onto their supersymmetric analogues. An external field is included, implying that the
overall invariance is broken. We showed that supersymmetry decouples to a large extent
the properties of the invariant random matrix ensemble from those of the invariance breaking
external field. This is true for all TOE, TUE and TSE, facilitating the analytical treatment
tremendously.

Our results are exact and for finite level number. We derived transformation formulae
which yield the probability density in superspace as one-dimensional integral involving
the probability density in ordinary space. These formulae state the most important
conceptual insight of this contribution. We emphasize that only the existence, but not the
explicit knowledge of the Fourier integral or the spread function is needed to obtain the
probability density in superspace. The transformation formulae clarify the mechanism of how
supersymmetry manages to reduce the number of degrees of freedom. We worked out several
examples. Remarkably, the functional forms of the probability densities tend to be similar in
ordinary and superspace. In particular, this is so for the whole family of ensembles deriving
from a non-extensive entropy principle.

From a practical viewpoint, our most important findings are a series of exact results for
the correlation functions which can be used in applications. Different limits for the level
number or other parameters can now be studied depending on the ensemble of interest. The
most explicit formulae are for the TUE where we employed the determinant structure of the
GUE correlations. We also derived a probability density for the TUE in the superspace of
eigenvalues.

Can supersymmetry be applied to ensembles which are more general than the norm-
dependent ones? Indeed, a supersymmetric representation is possible under quite general
conditions. However, as this construction requires a completely different approach, we defer
it to another contribution [44].

Acknowledgments

I thank Frieder Kalisch and Heiner Kohler for fruitful discussions. I acknowledge financial
support from Det Svenska Vetenskapsrådet.

Appendix A. Moments of norm-dependent probability densities

The following calculation, although rather straightforward, yields an interesting side result
which might be useful in other applications. This is why we sketch the calculation here.
Inserting the diagonalizations H = UxU−1 with x = diag(x1, . . . , xN) and a double
degeneracy for β = 4, we find from the definition of the moments in equations (12)

M(Tβ)
ν = πβN(N−1)/4 	N(1 + β/2)∏N

n=1 	(1 + nβ/2)

∫
P (Tβ)(Tr x2)(Tr x2)ν |�N(x)|β d[x], (A.1)

where �N(x) = ∏
n<m(xn − xm) is the Vandermonde determinant. The constant in front

of the eigenvalue integral contains the result of the integration over U and also some factors
stemming from the Jacobian of the transformation to eigenvalue-angle coordinates. We view
the eigenvalues as components of a vector 
r = (x1, . . . , xN) in N dimensions and introduce
polar coordinates 
r = r
e where r is the length and 
e a unit vector depending on N − 1 angles.
The volume element reads d[x] = dNx = rN−1dr d� where d� is the infinitesimal solid
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angle. Because of r2 = Tr x2, we have

M(Tβ)
ν = πβN(N−1)/4 	N(1 + β/2)∏N

n=1 	(1 + nβ/2)

∫
|�N(
e)|β d�

∫ ∞

0
rν+N−1+βN(N−1)/2P (Tβ)(r2) dr.

(A.2)

The angular integral can be inferred by inserting the Gaussian probability density (4) and
considering ν = 0, i.e. M

(Tβ)

0 = 1. The radial integral can then be done and we find as an
interesting side result∫

|�N(
e)|βd� = πN/2 ∏N
n=1 	(1 + nβ/2)

2βN(N−1)/4−1	N(1 + β/2)	(µ/2)
. (A.3)

Putting u = r2 and collecting everything we arrive at the second part of equations (12).

Appendix B. Evaluation of the kernel

We start by observing that the determinant can be written in the form

N∏
n=1

is2 − H0n

s−
1 − H0n

=
N∏

n=1

(
1 +

is2 − s1

s−
1 − H0n

)

= 1 +
N∑

n=1

is2 − s1

s−
1 − H0n

N−1∑
m=0

(is2 − s1)
m∏

m′∈�
(N)
n,m

(H0n − H0m′)
. (B.1)

Here, �(N)
n,m is a subset of the N − 1 indices remaining when removing the index n from the

original N indices such that m pairs (n,m′) are formed. This can also be formulated in terms
of symmetric functions. For example, in the case N = 3 and n = 1, one has

2∑
m=0

(is2 − s1)
m∏

m′∈�
(3)
1,m

(H0n − H0m′)
= 1 +

is2 − s1

H01 − H02
+

is2 − s1

H01 − H03
+

(is2 − s1)
2

(H01 − H02)(H01 − H03)
.

(B.2)

This yields a most convenient expression containing only δ functions,

	
N∏

n=1

is2 − H0n

s−
1 − H0n

= π

N∑
n=1

(is2 − s1)δ(s1 − H0n)

N−1∑
m=0

(is2 − s1)
m∏

m′∈�
(N)
n,m

(H0n − H0m′)
, (B.3)

which facilitates the evaluation of the s1 integral in equation (56). Importantly, the difference
s1 − is2 also disappears in the denominator and the remaining s2 integration simply becomes∫ +∞

−∞
(is2 − H0n)

m exp

(
(is2 − xq)

2

2tα2

)
ds2 =

√
2tα2

m+1√
π

2m
Hm

(
xq − H0n√

2tα2

)
, (B.4)

with Hm(z) denoting the Hermite polynomial of degree m. Collecting everything, we find

CN(xp, xq, tα
2,H0) =

N−1∑
m=0

(
tα2

2

)m/2 N∑
n=1

exp((H0n − xp)2/2tα2)√
2πtα2

Hm((xq − H0n)/
√

2tα2)∏
m′∈�

(N)
n,m

(H0n − H0m′)
.

(B.5)

We note that the first sum extends from zero to N − 1, exactly as in the case of the GUE
without external field.
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